

Grower Summary

PO 020a

The development of an experimental deep pool hydroponics system to investigate its potential for cut flowers.

Final Report 2017

Disclaimer

While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.

©Agriculture and Horticulture Development Board 2017. No part of this publication may be reproduced in any material form (including by photocopy or storage in any medium by electronic mean) or any copy or adaptation stored, published or distributed (by physical, electronic or other means) without prior permission in writing of the Agriculture and Horticulture Development Board, other than by reproduction in an unmodified form for the sole purpose of use as an information resource when the Agriculture and Horticulture Development Board or AHDB Horticulture is clearly acknowledged as the source, or in accordance with the provisions of the Copyright, Designs and Patents Act 1988. All rights reserved.

The results and conclusions in this report may be based on an investigation conducted over one year. Therefore, care must be taken with the interpretation of the results.

Use of pesticides

Only officially approved pesticides may be used in the UK. Approvals are normally granted only in relation to individual products and for specified uses. It is an offence to use nonapproved products or to use approved products in a manner that does not comply with the statutory conditions of use, except where the crop or situation is the subject of an off-label extension of use.

Before using all pesticides check the approval status and conditions of use. Read the label before use: use pesticides safely.

Further information

If you would like a copy of the full report, please email the AHDB Horticulture office (hort.info.@ahdb.org.uk), quoting your AHDB Horticulture number, alternatively contact AHDB Horticulture at the address below.

AHDB Horticulture, AHDB Stoneleigh Park Kenilworth Warwickshire CV8 2TL

Tel – 0247 669 2051

AHDB Horticulture is a Division of the Agriculture and Horticulture Development Board.

Project title:	The development of an experimental deep pool hydroponics system to investigate its potential for cut flowers.
Project number:	PO 020a
Project leader:	Lyndon Mason, LRM Horticultural Services Ltd
Report:	Final Report, January 2017
Previous report:	N/A
Key staff:	Lyndon Mason Paul Challinor
Location of project:	
Industry Representative:	Graham Whitehead
	Whiteheads of Boston
	The Nursery, Wortelys Lane, Boston
	Lincs, PE21 7JF
Date project commenced:	30th March 2015
Date project completed (or expected completion date):	31st January 2017

GROWER SUMMARY

Headlines.

- Column stock production has been more challenging than other cut flowers in deep pool hydroponics owing to disease issues and a high oxygen requirement in the solution.
- However, two years of trials have shown that deep and shallow pool hydroponics seem to be possible systems for cut flower production although engineering solutions are now needed to develop the system on a commercial scale.
- The production of column stocks could be possible in vertical systems (eg aeroponic tubes) but a bespoke support system would need to be developed.
- It is possible to produce column stocks in tulip pin trays using a clay pellet substrate but further trials and subsequent detailed costings are required.

Background

The control of *Fusarium oxysporum* is a major issue for flower growers, especially those producing Matthiola incana (column stocks) and Lisianthus. Despite a number of AHDB funded projects, the only reliable control is still the expensive and time consuming technique of steam sterilisation, but even this is only a partial cure and large losses can still be seen in steamed glasshouses. In an attempt to overcome these issues the industry has been looking at the possibility of moving completely out of soil into a hydroponics system. The preferred option was some form of solution hydroponics rather than substrate hydroponics and the simplest system seemed to be deep pool hydroponics where the crop is grown on floating rafts in a large pool of water 25 to 30 cm deep. After a trip in December 2014 to look at lettuce production in deep pool hydroponics, Phil Collison of J A Collison and Son decided to construct a small trial pool (7 m x 3.8 m) in order to undertake AHDB funded trials during 2015. There was very little documented work on the production of stocks in a solution hydroponics system and none in deep pool. The purpose of the first year trial (2015) trial was therefore to simply explore some of the basics of production to determine if a marketable crop was even possible. The second year trial (2016) built upon the findings of the 2015 results as well as looking at a number of other potential systems.

Summary

YEAR 1 (2015)

The deep pool hydroponic trial facility was constructed in December 2014 and was filled with water in mid-March 2015 ready for the trial to commence in late March 2015.

A number of different floating trays were made from 600 mm x 400 mm x 25 mm dense polystyrene sheets which enabled both plugs and blocks to be investigated. The nutrient status was controlled by an existing "Heron" controller using a traditional A and B tank as well as concentrated nitric acid for pH control. The initial nutrient recipe was drawn up by Paul Challinor of May Barn Consultancy and this was slightly modified for the use of either reservoir or mains water (see table 6 and 7). The water was constantly circulated and entered the pool via a perforated pipe at one side of the pool and was drawn out by a similar perforated pipe at the other side. Oxygenation was initially provided by a "Venturi" which introduced air into the solution. The first plantings were a mixture of stocks propagated in both blocks and plugs, floats of lettuce blocks to act as a "check" species as well as blocked statice and Lisianthus plugs.

It soon became clear that the stocks were not thriving and while the other species (especially the lettuce) were growing away very vigorously, the stocks looked very sick. The block propagated stock plants initially seemed to be performing better, but as soon as the roots reached the water they began to turn brown and decay. This contrasted starkly with the lettuce which were ready to harvest within a few weeks and had very vigorous, healthy white roots. This clearly demonstrated that there was no fundamental problem with the pool design but in its current form it was obviously not conducive to the production of column stocks.

A number of brassica were then planted to determine if the system was suitable for Cruciferae (the same family as stocks) in general in the deep pool system. A modified air gap was also introduced to some of the stock trays so that the block or plug was not directly sitting in the water. Aster, ericoides and chrysanthemums were also planted at this stage to broaden the assessment.

A month later the brassica (including, cabbage, sprouts and cauliflower) had put on substantial growth, the aster ericoides and lettuces were thriving but the stocks continued to die. None of the changes that had been made seemed to have made any difference but there were a few random stock plants that had made a marketable flower despite those around them being either dead or very sick. This suggested that stocks have the potential to thrive in the system with further development of the set up.

After researching the issue further one factor that kept coming up was oxygenation of the water, and there was a suspicion that perhaps stocks required more oxygen than the other crops that were growing in the pool. Accurate oxygen measuring kit and some additional oxygenating equipment in the form of air pumps and air stones were obtained to test this theory. Without additional oxygenation (beyond the venturi system) initial measurements of dissolved oxygen were low (around 2 mg/l or 20% saturation) but once the air stones were introduced, the area immediately around the stone rose to around 8.5 mg/l (85% saturation) and the concentration a few feet away from the stone rose to around 6 mg/l (60%

4

saturation). Soon after increasing the oxygen concentration positive results were seen, with the stock plants immediately above the air stone producing both healthy leaves and more significantly, healthy white roots. However this positive effect was very localised with plants growing two rafts away from the air stone being no better than before even though the oxygen saturation had increased three fold. This clearly demonstrated that stocks seem to need a much higher oxygen concentration than anyone had initially appreciated.

Unfortunately two weeks later some of the healthy plants in the floats over the air stones began to wilt. Closer inspection showed that the problem was in the stem base which resulted in the roots and stem being detached from one another. This was subsequently confirmed by STC plant clinic as being *Phytophthora* and a recommendation was made to apply metalaxyl as Subdue to the pool. Unfortunately because it was by now so late in the season, no more plugs could be obtained so it was only possible to look at the effect of Subdue on the existing plants rather than a new batch. However the results of the Subdue did seem to be have a marked effect and very few additional plants seemed to succumb to *Phytophthora* although those already infected did not of course recover. By the end of September a number of flowering stems had been achieved and since the addition of the Subdue, it seemed that the positive effect of the air stones was wider than just the float immediately above them.

In addition to the main deep pool trial a small secondary trial was undertaken in three 1.2 m x 1.2 m shallow pools which are only 10 cm deep and are designed to be used with rolling tables. This was started very late in the season so only one round could be produced hence the results must be treated with caution. However, one of these shallow pools had the addition of an experimental form of electrolysed water which allows free available chlorine (FAC) to be released into the solution and this produced some of the best stems of the season although they did not crop until late October.

To summarise, for stocks in the deep pool hydroponics system, none of the earlier variables that were investigated i.e. plugs or blocks, different forms of air gap (or no air gap), different varieties and different planting dates made any difference to the performance of the plants. It was only the introduction of additional oxygen bringing the level up to around 8 mg/l (80% saturation) that started to result in the production of marketable stems even though some of these subsequently succumbed to *Phytophthora* before Subdue was introduced to the water. The additional trial looking at shallow pool hydroponics has given an indication that it may also be a system that can be utilised for column stock production but as with the deep pool trials it needs to be further investigated to ensure that the encouraging results obtained at the end of the 2015 trials can be both repeated and replicated.

5

YEAR 2 (2016)

The second year of trials concentrated on just column stocks and incorporated two of the key findings of year 1, i.e. high oxygen concentrations and fungicides to control oomycete disease. These were applied from day 1 of planting in the deep and shallow pool trial. In order to better control the pH and nutrient status, a new IntelliDose controller was fitted complete with peristaltic pumps to deliver the A & B tank nutrient as well as the nitric acid.

Air stones were again used to oxygenate the water and by careful placing of the stones an oxygen gradation was created across the trial. The results of this clearly verified the findings of the 2015 trial and showed that high levels of oxygen in the water are required to produce a healthy root system and subsequent good quality flowers. The use of oomycete fungicides also seemed to adequately control root and stem diseases in the 2016 trial.

The 2016 trials showed that by the use of appropriate fungicides and high oxygen levels in the water, it is possible to produce marketable stems of column stocks in both deep and shallow pool systems. However, in order to now move from a small trial to a commercial scale system, an engineering solution would need to be developed to adequately oxygenate the water to an appropriate level. This will be more difficult with a shallow pool than a deep pool system owing to having a large number of units that all need to be individually oxygenated rather than the one large single system required by the deep pool. It may also be possible to redesign the floats to, for example, have an air gap when using plug-grown in net pots.

It was also clear from both the 2015 and 2016 trials that the plants need to be supported, and if the floats are moved around the system from planting to harvest (as is the case with deep pool lettuce production) the support system would probably need to be an integral part of each individual float. This would also require a commercial engineering solution to resolve the issue.

In addition to the deep and shallow pool trials in 2016, a trial to investigate a vertical aeroponics system was undertaken. While the quality of the stems indicted that it is possible to produce stocks in such a system, a crop support system would need to be devised. This is not an insurmountable issue and the Project Manager has seen support systems used in other vertical hydroponic systems, however careful costing would need to be undertaken before embarking on such a system.

Following on from a very encouraging demonstration seen at Greenmount in the spring of 2016, a trial was set up to look at the use of extruded clay pellets (LECA) as a reusable substrate in tulip pin trays as an ebb and flood system. Two rounds were produced using this system and encouraging results were obtained where the water was drained away completely by using an ebb and flood drain plug. The plan is to undertake further trials in 2017 in an attempt to see if this can be scaled up to a viable and cost-effective solution.

6

Propagation in modules was also investigated using 4.5, 5.5 and 9 cm net hydroponic pots and 4 cm oasis blocks. None of these modules showed any advantage for the deep and shallow pool systems. Perhaps the most surprising result of the 2016 trials was the fact that high quality (and apparently self-supporting) stems of stocks were produced in a 9 cm net pot using what can only be described as a "Heath Robinson" ebb and flood system. This was a result that warrants further investigation in a commercial scale ebb and flood system.

Financial Benefits

To provide an economic assessment of a deep pool hydroponics system is not easy because for it to be economically viable a crop would need to be produced all year round as is the case with lettuce. At this stage it is not clear what crop could be produced in summer and autumn to follow on from the stocks.

If a grower did want to set up a 0.1ha deep pool hydroponic system an estimate of cost would be £5 per sq/m for the liner (£5,000 for 0.1 ha), around £25 per sq/m to concrete the floor (£25,000 for 0.1 ha), £30,000 for the irrigation plus control system and a further £5,000 for labour and other miscellaneous costs. This would make a total ball park figure of around £65,000 to set up a 0.1 ha (quarter of an acre) basic deep pool system.

In 2017, the CFC hopes to further investigate the use of LECA pellets in tulip pin trays including accurate costs of using such a system.

Action Points

- Consider small scale trials of deep and shallow pool hydroponics for cut flowers but further engineering solutions are required to develop this on a commercial scale
- Vertical aeroponic and hydroponic systems are a possibility for the production of column stocks but support is required and the chosen system would require careful economic evaluation (for further details see .http://www.aponic.co.uk/ and http://www.saturnbioponics.com/trial-crops/column-stock-flowers/)
- Other systems that growers could consider trialling in a commercial situation are tulip pin trays with a clay pellet substrate and net pots within and ebb and flood system.
- Keep up to date with future AHDB funded trials in 2017 and beyond.